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ABSTRACT 

This research project aimed to develop a highly efficient and effective Chrome extension 

that could classify tweets containing hate speech, along with conducting sentiment and 

topic analysis. Hate speech is a persistent and concerning issue on Twitter, yet the platform 

has made little effort to address it. To address this challenge, this research performed a 

series of experiments, including the use of Support Vector Machine (SVM), Random 

Forest, and Long Short-Term Memory-based (LSTM) neural network classifiers. The 

results of the experiments showed that the SVM classifier, combined with word2vec [1] 

feature engineering, outperformed all other methods. 

Then developed the Chrome extension using a monolithic repository architecture, utilizing 

React and Django. By implementing this extension, users are able to automatically analyze 

live tweets and identify hate speech content, along with obtaining sentiment and topic 

analysis. The outcome of this research project could provide a significant contribution 

towards a more positive online environment and towards curbing the prevalence of hate 

speech on Twitter. 

Keywords: NLP, Hate Speech Classification, SVM, NLP Classifier, LSTM, Chrome 

Extension 

  



 

 

1 INTRODUCTION 

1.1 Overview 

Hateful speech is a pervasive problem in modern times due to the rise of the internet, 

making it easier to spread negative content to a large audience. Twitter, a popular social 

media platform, claims to promote free speech, but it has been widely used to spread hate 

and promote hateful ideologies. As such, there is a need to develop a tool to censor such 

content on Twitter. This paper proposes the development of a Google Chrome plugin 

extension that utilizes natural language processing to detect hate speech in a user's live 

Twitter feed. 

1.2 Background and Motivation 

Despite the negative effects of hate speech on people's emotional well-being, Twitter has 

refused to take any action against its platform being used for racist, anti-Semitic, 

homophobic, and transphobic attacks. Twitter’s negligence towards hate speech on their 

platform is well demonstrated by insurrection at U.S. capital building on 6th January, 2020; 

it took Twitter 4 years to final take action against an alleged racist and Nazi sympathizer 

Donald J. Trump. The growth of hate speech on other platforms such as Reddit has shown 

negative effects on the mental health of college students [2]. To address this problem, this 

paper proposes a solution that will automatically detect and censor hate speech on Twitter 

using a Google Chrome plugin. To ensure that the system is effective, it will also 

incorporate topic and sentiment analysis to provide a more comprehensive hate speech 

detection system. The removal of hate group Subreddit on Reddit has shown that censoring 

certain content is necessary to reduce hate speech on online platforms [3], highlighting the 

importance of developing effective tools to detect and censor hate speech. 

Paper purposes a hate speech classification model developed using Natural Language 

Processing (NLP) techniques such as embedding matrix using word2vec [1], and mean 

pooling for feature reduction. Paper drew conclusion on using noble SVM model after 

running 21 different experiments with different NLP feature engineering technique and 

neural network architecture.  



 

 

For the sentiment and topic analysis, this paper purposes the use two transformers from the 

hugging face library: cardiffnlp/twitter-xlm-roberta-base-sentiment [4], and classla/xlm-

roberta-base-multilingual-text-genre-classifier [5]. This allowed for a robust hate speech 

detection system to be built around hate speech classification, sentiment analysis, and topic 

analysis. 

1.3 Problem Statement 

In recent years, hate speech has become an inescapable part of daily life for Twitter users, 

and despite the negative psychological effects linked to hate speech [2], Twitter has not 

taken sufficient action to address this issue. Any measures taken by Twitter have only been 

in response to public outcry and not of their own accord. In 2022, Twitter finally banned 

Kanye West after decade long controversies and hate speech, it was same with Donald J. 

Trump. Twitter’s hate speech policy aims to create a safe and healthy environment on their 

platform [6], but it seems like twitter has done very little to support this policy, especially 

when it comes to celebrities and politician. This issue has future magnified after Elon Musk 

took over Twitter on October of 2022; as state in a piece done by Sheera Frenkel and Kate 

Conger in the New York Times, the derogatory inuendo against black Americans have gone 

up from 1,282 times a day to 3,876 times a day, and slurs against gay men used to appear 

2,506 times a day now going up to 3,964 times a day, as well as antisemitism has increased 

by more than 61 percent in the two weeks after Elon Musk acquire the site. [7] 

1.4 Objectives 

The Objectives of this project are listed below: 

a) To censor hateful tweet written in English language 

b) To perform Topic and Sentiment analysis on Nepali and English tweets 

c) To develop a natural language processing model to identify hate speech tweets 

d) To develop Google Chrome plugin that will scrape live tweet feed of user to filter 

hateful tweets. 



 

 

1.5 Scope and Limitation 

This project is categorized under web-based machine learning applications, which is a 

specialized field in computer science that uses data to train specific parameters in an 

equation to make predictions. The project uses a trained machine learning model and two 

pre-trained transformers to determine if a tweet is hateful, as well as to perform topic and 

sentiment analysis on the tweets. Hate tweets are concealed, and the topic and sentiment of 

the tweet are presented above it in the form of a badge [see Appendix I].  

The scope of this project can be extended to multiple social networking websites including 

but not limiting to Facebook, Reddit, etc. As all of these websites require a way to control 

hate speech, but they cannot censor individuals' negative and hateful messages in order to 

safeguard freedom of speech. This extension circumvents this issue by allowing users to 

choose what they wish to view or avoid.  

However, a significant limitation of this project is that the developed extension is not cross-

browser compatible, nor is the trained model and deployed backend are cross-platform 

compatible with other social networks such as Facebook. This necessitates the development 

of entirely new extensions for web browsers like Firefox and new machine learning models 

and backends for other social media platforms. 

 

  



 

 

2 BACKGROUND STUDY AND LITERATURE REVIEW 

2.1 Background Study 

Machine learning is an established technology with a wide range of applications in various 

fields of computer science, including computer vision, signal analysis, and natural language 

understanding. This paper focuses on a specialized branch of machine learning known as 

NLP. 

Prior to the emergence of NLP, understanding and analyzing linguistic idiosyncrasies was 

nearly impossible. In traditional systems, there was no way to automatically comprehend 

natural language, so people had to be hired to review the sentiment and topic of any corpus. 

However, NLP bridged this gap by providing a means to vectorize text. 

Social media platforms are excellent for sharing ideas and ideologies, but they are 

frequently contaminated with hateful speech that has a detrimental impact on viewers' 

mental health [2]. 

A comprehensive literature review of the implications of hate speech on social networking 

platforms, as well as various machine learning and deep learning approaches for developing 

a classification model, is required to be deployed and used by a Chrome-based extension 

to address the problem of hate speech. 

2.2 Literature Review 

The prevalence of hateful speech in online communities has garnered attention in recent 

years, as its psychological effects on individuals have become a cause for concern. Koustuv 

Saha et al. [2] conducted a survey to investigate the prevalence of hateful speech in online 

college communities and its psychological effects on students. The study found that hate 

speech was present in 87.3% of the observed online college communities, and that 49.7% 

of participants reported experiencing psychological distress as a result of hate speech. 

These findings suggest that hate speech has a direct negative effect on mental health and 

requires immediate attention and action. Clay Calvert [3] examined the potential harms of 

hate speech and how communication theory can help understand and address them. In the 



 

 

ritual communication model, hate messages require a channel to be transferred from sender 

to receiver, with Twitter serving as such a channel in recent years. 

Machine learning algorithms have shown promise in detecting hate speech, but the choice 

of model remains an important factor. Sindhu Abra et al. [8] aimed to provide insights into 

the strengths and weaknesses of various machine learning algorithms for hate speech 

detection. The study employed data cleaning techniques, such as vectorization, 

lowercasing, removal of special characters, and stemming, followed by text vectorization 

using Term Frequency-Inverse Document Frequency (Tf-idf) with bi-gram. The study 

found that Multi-layer Perceptron (MLP) outperformed other models, achieving 96.7% 

accuracy, while SVM had an accuracy of 95.3%. These results indicate that simple 

preprocessing and algorithmic models can accurately classify hate speech. 

Akanksha Bisht et al. [9] proposed a deep learning approach based on LSTM models for 

detecting hate speech and offensive language in Twitter data. The study employed various 

NLP techniques, such as tokenization, stop-word removal, and stemming, followed by text 

vectorization using Sandford's GloVe2vec [10]. The system architecture consisted of one 

LSTM/Bi-directional Long Short-Term Memory (Bi-LSTM) layer with 100 units, followed 

by a fully connected SoftMax layer and a classification layer with follow stopping criteria:  

 

Fig. 1: Stopping Criteria for Neural Network 

The study found that a single LSTM-based neural network had an accuracy of 86%, and a 

single bi-LSTM layer achieved 84.62% accuracy, demonstrating the effectiveness of this 

approach for detecting hate speech in Twitter data. Gretel Liz De la et al. [11] employed a 



 

 

similar approach, training LSTM models using k-fold stratified cross-validation. The study 

found an F1 score of 87.7% on a Twitter dataset and 89.9% on a Facebook dataset when 

using five folds, indicating the efficacy of this approach in detecting hate speech. 

Sujatha Arun et al. [12] proposed a stacked weighted ensemble (SWE) model to improve 

the accuracy and efficiency of hate speech detection on Twitter. The study employed data 

cleaning techniques using the word_token tool from the Natural Language Toolkit (nltk) 

library, followed by the removal of hashtags and URLs, conversion to lowercase, removal 

of punctuation, and Porter stemming. The text was vectorized using Google's word2vec [1] 

technique. The SWE model had the highest F1 score of 78%, along with precision of 89% 

and accuracy of 95.54%, outperforming state-of-the-art machine learning algorithms such 

as SVM. The study concluded that the SWE model can achieve high performance with 

appropriate feature engineering. 

In summary, the studies discussed above provide valuable insights into the prevalence of 

hate speech in online communities and the psychological effects it has on individuals, as 

well as effective approaches to detecting and classifying hate speech using machine 

learning algorithms. These studies demonstrate the need for continued research in this area 

to develop effective strategies for combating hate speech in online spaces. 

2.3 Current System 

Larry filter for Twitter is a Chrome extension that allows users to filter out tweets based on 

specific keywords, hashtags, and usernames. Here is a breakdown of its features: 

Features: 

• You can filter out tweets based on specific words, hashtags, and usernames. 

• The tweets are hidden, but not deleted, so they can be retrieved at any time by 

disabling the filter or changing the criteria. 

• It is compatible with the latest version of Twitter. 

• The extension is easy to install and use, with a user-friendly interface. 

In summary, both Open Tweet Filter and Larry filter for Twitter offer filtering capabilities 

for Twitter, but Open Tweet Filter allows filtering based on content or author using regular 



 

 

expressions, while Larry filter for Twitter filters tweets based on specific keywords, 

hashtags, and usernames. 

2.4 Problem with Current System 

The current system allows users to filter out unwanted tweets on Twitter using regular 

expressions or a list of specified words, hashtags, and usernames. However, this system 

does not address the specific problem of hate speech classification in tweet feeds, or provide 

functionality for topic and sentiment analysis in English and Nepali. 

Some of the specific problems with the current system include: 

Lack of hate speech classification: The current system does not have the capability to 

classify tweets as containing hate speech or not. This is a critical issue for many social 

media platforms, including Twitter, which has faced significant criticism for not doing 

enough to combat hate speech and harassment. 

Limited language support: The current system only provides support for filtering tweets 

in English. This is a problem for users who may be interested in analyzing tweets in other 

languages, such as Nepali. 

Limited analysis capabilities: The current system only provides basic filtering 

functionality and does not provide any analytical capabilities for topic and sentiment 

analysis. This is a significant limitation for users who may be interested in understanding 

the topics and sentiments of the tweets in their feed. 

To address these problems, a more comprehensive system is needed that includes 

capabilities for hate speech classification, support for multiple languages, and advanced 

analytical capabilities for topic and sentiment analysis. 

  



 

 

3 SYSTEM ANALYSIS 

3.1 Analysis 

3.1.1 Sequence Diagram 

 

 

Fig. 2: Sequence Diagram of Entire System 

  



 

 

3.1.2 Activity Diagram 

 

 

Fig. 3: Activity Diagram of Entire System 

Sequence starts by connecting to “https://api.twitter.com/2/tweets/sample/stream” to fetch 

1% of all live tweets on English and Nepali Language. Tweet is then passed through custom 

made hate speech classifier, and topic and sentiment analysis using hugging face 

transformer API. Tweets are only analyzed if allowed by chrome extension. Analyzed 

tweets are passed to the frontend to be viewed. 

  

https://api.twitter.com/2/tweets/sample/stream


 

 

4 SYSTEM DESIGN 

4.1 Design 

4.1.1 Flow Diagram of System 

 

 

Fig. 4: Flow Diagram of Entire System 

Localhost is connected on port 8000 using browser, which initiate the process of fetching 

and analyzing tweets. WSGI renders the loading skeleton on the browser for the user, at 

the same time ASGI will connect to Twitter at 2/tweets/sample/stream to fetch 1% of all 

live tweets, and establish a web socket connection with the frontend rendered by WSGI. 

Chrome extension has control over which analysis should be performed (hate speech, topic, 

or sentiment). Based on the settings, session is set in WSGI which is accessed by ASGI 

through cache. 

If hate speech flag is set, then sampled tweets will be analyzed for hate speech, and if topic 

or sentiment flag are set, hugging face will be used to perform hate and topic analysis on 

sampled tweets. After analysis, tweets are sent back to the frontend, along with their context 

annotation tags, to be displayed for the user. 

 

  



 

 

4.1.2 Deployment Diagram 

 

 

Fig. 5: Development Diagram of System 

Entire project was developed using Monolithic architecture, making deployment very easy 

and fast. Browser connects to chrome extension which can set different flags for the entire 

system. Port 8000, will render a loading screen and fetch 1% of sample stream tweets for 

analysis on the trained model and hugging face API transformers. 

Model training was done in Google Collaboratory (Google Colabs), using NLP techniques, 

and word2vec [1] for vectorization. 

  



 

 

5 IMPLEMENTATION AND TESTING 

5.1 Implementation 

The core of the system comprises the hate speech classification model and, the topic and 

sentiment analysis models. To begin with, a Twitter hate speech dataset from Kaggle was 

used to develop the hate speech classification model. The entire process of data cleaning, 

pre-processing, and feature engineering, as well as model training and validation, was 

carried out on Google Colab. The feature engineering and model training were executed in 

three phases, with multiple experiments in each phase, as detailed in Section 5.1.1 - 

Implementation Details of Modules. Additionally, a pre-trained transformer from the 

Hugging Face library was selected for topic and sentiment analysis on Nepali and English 

tweets. 

A monolithic architecture was set up using nx for seamless development of both the 

frontend and backend on the local machine. The frontend of the project, a Chrome 

extension, was developed in ReactJS with the setup using vite.js for fast Hot Module 

Reload (HMR) using esbuild. For improved functionality and ergonomic visibility during 

development, the SCSS styling was used instead of pure CSS, with the Neumorphic design 

pattern applied in the Chrome extension design. 

The backend of the project was developed using Python and Django with Asynchronous 

Server Gateway Interface (ASGI) to establish a web-socket connection. 

  



 

 

5.1.1 Implementation Details of Modules 

Methodology for Model Training and Development 

To initiate the development of the Twitter hate speech classifier, the initial step involved 

collecting a dataset named "Toxic Tweets Dataset" [13] from Kaggle, comprising of 56,745 

tuples and 2 features.  

 

Fig. 6: View of Dataset 

In the subsequent step, a countplot was employed to visualize the balance of the label within 

the dataset. 

 

Fig. 7: Count plot of Labels  



 

 

The development of a Twitter hate speech classifier involved three phases: 

The first phase focused on data cleaning, feature engineering, and experimentation using 

several classification models, including SVM, AdaBoost Classifier, and Random Forest. 

The dataset was pre-processed using various techniques such as lowercase, contraction fix, 

removal of stop-words, URLs, HTML decoding, extra spaces, punctuation, emojis, 

diacritical marking, unicode decoding, and Porter Stemming. Following the data cleaning 

process, a word cloud visualization was developed. 

 

Fig. 8: Word Cloud of tweets 

  



 

 

 

Fig. 9: After preprocessing using TF-IDF 

Following that vectorization was done using TF-IDF. In this experimentation phase, the 

performance of the classifiers was evaluated using F1-score.  

In the second phase, the same pre-processing techniques were used as in the first phase, 

and vectorization was done using Stanford's Glove [10] with glove.twitter.27B.100d.txt to 

create an embedding matrix of 100 x 25. Instead of using machine learning models, neural 

networks were developed; LSTM and Bi-LSTM models were used for classification, and 

hyperparameter tuning was performed for Bi-LSTM. Stratified K-fold cross-validation was 

also done to ensure that the models generalize well.  

 

  



 

 

 

Fig. 10: Architecture of LSTM Neural Network 

 

Fig. 11: Structure of LSTM Neural Network 

  



 

 

 

Fig. 12: Structure of Bi-LSTM Neural Network 

To evaluation of the metric of LSTM/ Bi-LSTM based neural network was done using train 

loss vs validation loss, train accuracy vs validation accuracy, and Receiver Operating 

Characterstics (ROC) curve. 

In the third phase, a new set of data cleaning techniques were applied, including 

tokenization, removal of URLs, mentions, hashtags, lowercase conversion, removal of 

punctuation, Porter stemming, and stop-word removal. The vectorization technique used 

was Google's Word2vec. The mean and max pooling of vectors was experimented with the 

following classifiers: Logistic Regression, Gaussian Naïve Bayes, SVM, and Random 

Forest Classifier.  

 

Fig. 13: After word2vec and Mean/Max Pooling 



 

 

Further experiments used stratified K-fold cross-validation was done with the mean pooling 

technique. In this phase, evaluation was done using f1-score, accuracy, recall, precision, 

ROC curve and confusion matrix. 

Finally, stacking generalization was used with SVM, Random Forest Classifier, and 

Gaussian Naïve Bayes as base models and Logistic Regression as the meta model. 

 

Fig. 14: Stacking Generalization Model Architecture 

Throughout the development process, exploratory analysis was performed, which included 

an analysis of the balance of the dataset and a word cloud. The goal was to build an accurate 

and efficient hate speech classifier for Twitter data. The different phases of the 

development process allowed for a thorough evaluation of various pre-processing 

techniques, vectorization methods, and classification models to achieve the optimal 

performance of the hate speech classifier. Result of experiments done in different phases 

are explained in detail in Section 5.2 - Result Analysis. 

Summary of data cleaning technique and methodology used during training of mode is 

provided below: 

  



 

 

Table 1: Data Cleaning Technique 

Data cleaning Reference Number 

Lowercase 1 

Contraction fix 2 

Removing stop-word 3 

URL removing 4 

Decoding HTML 5 

Removing Extra Space 6 

Replace Emoji 7 

Remove Diacritical mark 8 

Unicode decode 9 

Nltk twitter tokenizer 10 

Nltk word_tokenizer 11 

Porter stemming 12 

Removing mentions and hashtags 13 

Removing Punctuation 14 

 

Table 2: Implementation Details of Different Experiments 

Experiments Models 

Data cleaning 

(in sequence) 

r/ Table 1: Data 

Cleaning 

Technique 

Vectorization 

method 
Metrics 

Phase 1 

P1E1 SVM 

1, 2, 3, 4, 5, 6, 

14, 7, 8, 9, 12 

Tf-idf with bi-

gram 
F1-score 

P12E2 AdaBoost 

P1E3 
Random Forest 

(RF) 

Phase 2 

P2E1 LSTM 10, 1, 2, 3, 4, 5, 

6, 14, 7, 8, 9, 12 
GloVe 

Train loss vs 

validation loss; P2E2 Bi-LSTM 



 

 

Train accuracy 

vs Validation 

Accuracy; 

ROC curve 

P2E3 

Hyperparameter 

tuning of Bi-

LSTM 

Train loss vs 

validation loss; 

Train accuracy 

vs Validation 

Accuracy; 

P2E4 

Stratified K fold 

cross validation 

of LSTM w/ 5 

folds 

Mean train 

accuracy vs 

Mean 

validation 

accuracy of 

every fold 
P2E5 

Stratified K fold 

cross validation 

of LSTM w/ 10 

folds 

Phase 3 

P3E1 LR 

11, 4, 13, 1, 14, 

12, 3 

Word2Vec, 

Max Pooling 

F1-score; 

Accuracy; 

Recall; 

Precision; 

Confusion 

Matrix; 

ROC curve 

 

P3E2 
Gaussian Naïve 

Bayes (GNB) 

P3E3 RF 

P3E4 SVM 

P3E5 LR 

Word2Vec, 

Mean Pooling 

P3E6 GNB 

P3E7 SVM 

P3E8 RF 

P3E9 
Stratified k fold 

LR w/ 5 folds 

P3E10 
Stratified k fold 

GNB w/ 5 folds 

P3E11 
Stratified k fold 

RF w/ 5 folds 



 

 

P3E12 
Stratified k fold 

SVM w/ 5 folds 

P3E13 

Stacking 

generalization- 

Base mode: 

GNB, SVM, 

RF; meta 

model: LR 

Configuring Monolithic repo 

The project development was structured in a monorepo architecture, facilitating modular 

development of the React-based frontend, namely the Chrome extension. The 

implementation of the nx-react plugin and the nx-workspace plugin enabled the creation of 

a lightweight frontend, while additional components can be added as required. 

Subsequently, a contained virtual environment for the backend was created using Pipenv, 

which generates a dependency configuration in TOML file format that can be utilized to 

set up the Django project, including all Python-based dependencies, alongside Node 

modules using Yarn. 

 

Fig. 15: Monorepo Project Structure 

 



 

 

5.2 Result Analysis 

In Section 5.1.1—Implementation Details of Modules, we conducted several experiments 

in three phases to evaluate the effectiveness of different text vectorization techniques and 

models. These phases included tf-idf with bi-gram trained on machine learning models, 100 

x 25 GloVec [10] embedding matrix trained on neural network, and Word2Vec [1] vectors 

with mean and max pooling trained on machine learning models. The impact of these 

techniques was thoroughly analyzed and assessed. 

During Phase 1, we performed experiments using SVM, AdaBoost Classifier, and Random 

Forest models after text vectorization was carried out using TF-IDF with bi-gram. Among 

these models, the Random Forest model exhibited the best F-score of 0.759. However, due 

to its relatively low score, this approach was not deemed suitable for our needs. 

Table 3: F-score of Phase 1 Experiments 

Experiment Model F-score 

P1E1 SVM 0.677 

P1E2 AdaBoost 0.422 

P1E3 Random Forest 0.759 

In Phase 2, the text vectorization technique employed was GloVec [10], and the 

performance of the LSTM, Bi-LSTM, and Stratified K-fold cross-validation models were 

evaluated. However, the LSTM and Bi-LSTM models were observed to be overfitting, 

displaying good performance on the training data but poor generalization to the test data.  

 

Fig. 16: Bi-LSTM Train vs. Validation Accuracy and Loss 



 

 

 

Fig. 17: LSTM Train vs. Validation Accuracy and Loss 

Table 4: Phase 2 Experiments Results (Loss and Accuracy) on Test set 

Experiments Hidden Layer Loss Accuracy 

P2E1 LSTM 0.682 0.574 

P2E2 Bi-LSTM 0.51 0.76 

 

 

Fig. 18: ROC curve Bi-LSTM 

Despite hyperparameter tuning, the highest validation accuracy achieved was less than 80% 

even after 694 trials. 



 

 

 

Fig. 19: Best Parameters and Validation Accuracy of Hyperband Bi-LSTM 

 

 

Fig. 20: Hyperband Tuned Bi-LSTM Train vs. Validation 

Additionally, K-fold cross-validation experiments were conducted, with 5 folds for LSTM 

and 10 folds for Bi-LSTM, which confirmed the overfitting issue of the LSTM and Bi-

LSTM models. Therefore, LSTM/ Bi-LSTM based neural network techniques were 

deemed unsuitable for the dataset. 



 

 

 

Fig. 21: Train vs Validation Accuracy LSTM 

 

Fig. 22: Train vs. Validation Accuracy Bi-LSTM 

In Phase 3, a novel feature engineering technique was employed to vectorize the text 

through the use of word2vec, and mean and max pooling. Subsequently, experiments were 



 

 

conducted using a range of machine learning models, such as Logistic Regression, 

Gaussian Naive Bayes, SVM, and Random Forest, in conjunction with mean and max 

pooling of vectors. The outcomes demonstrated that all models performed effectively with 

the mean of vectors. Of the models tested, the SVM model yielded the best performance 

with an F-score of 0.89, accuracy of 0.91, recall of 0.86, precision of 0.93, and an AUC of 

ROC curve of 0.966. 

 

Fig. 23: Bar plot of Different Model Evaluation Metric (Mean Pooling) 

 

Fig. 24: Bar plot of Different Model Evaluation Metric (Max Pooling) 



 

 

 

Fig. 25: Confusion Matrix of Different Model (Mean Pooling) 

 

Fig. 26: Confusion Matrix of Different Model (Max Pooling) 



 

 

 

Fig. 27: ROC curve of Different Models (Mean Pooling) 

 

Fig. 28: ROC curve of Different Models (Max Pooling) 



 

 

Furthermore, a stratified K-fold cross-validation with four folds was conducted on the train-

test split, which demonstrated outstanding results. The SVM model was shown to have the 

highest mean validation accuracy of 0.91.  

 

Fig. 29: Train vs. Validation Accuracy of Different Models 

 

Fig. 30: Confusion Matrix of Stratified K-fold cross validation SVM (K=4) 



 

 

 

Fig. 31: ROC curve of Stratified K-fold SVM (K=4) 

Finally, the last experiment in Phase 3 involved stacking generalization, with SVM, 

Random Forest, and Gaussian Naïve Bayes utilized as the base models, and Logistic 

Regression as the meta-model.  



 

 

 

Fig. 32: Confusion Matrix of Stacking Generalization 

 

Fig. 33: ROC curve of Stacking Generalization 

However, it is worth noting that the novel SVM model still outperformed the generalized 

model, with an AUC value of 0.966 compared to the AUC of stacking generalization of 

0.929. 



 

 

Table 5: Evaluation Result for Different Experiments 

Experiment Model Evaluation 

Phase 1 

P1E1 SVM F1-score = 0.67 

P1E2 AdaBoost F1-score =0.42 

P1E3 Random Forest F1-score = 0.75 

Phase 2 

P2E1 LSTM 
Test Accuracy = 0.57 

Test Loss = 0.68 

P2E2 Bi-LSTM 
Test Accuracy = 0.76 

AUC value = 0.51 

P2E3 
Hyperparameter tuning of 

Bi-LSTM 
Validation Accuracy = 0.78 

P2E4 

Stratified K fold cross 

validation of LSTM w/ 5 

folds 

Mean Train Acc = 0.33 

Mean Validation Acc= 0.32 

P2E5 

Stratified K fold cross 

validation of LSTM w/ 10 

folds 

Mean Train Acc = 0.36 

Mean Validation Acc = 

0.34 

Phase 3 

P3E1 LR (Max pooling) 

F-score = 0.86 

Accuracy = 0.89 

Recall = 0.83 

Precision = 0.9 

AUC = 0.942 

P3E2 GNB (Max pooling) 

F-score = 0.78 

Accuracy = 0.8 

Recall = 0.82 

Precision = 0.75 

AUC = 0.9 

P3E3 SVM (Max pooling) 
F-score = 0.89 

Accuracy = 0.91 



 

 

Recall = 0.84 

Precision = 0.94 

AUC = 0.921 

P3E4 RF (Max pooling) 

F-score = 0.88 

Accuracy = 0.9 

Recall = 0.82 

Precision = 0.95 

AUC = 0.782 

P3E5 LR (Mean pooling) 

F-score = 0.87 

Accuracy = 0.89 

Recall = 0.84 

Precision = 0.9 

AUC = 0.952 

P3E6 GNB (Mean pooling) 

F-score = 0.82 

Accuracy = 0.85 

Recall = 0.83 

Precision = 0.82 

AUC = 0.9 

P3E7 SVM (Mean pooling) 

F-score = 0.89 

Accuracy = 0.91 

Recall = 0.86 

Precision = 0.93 

AUC = 0.966 

P3E8 RF (Mean pooling) 

F-score = 0.87 

Accuracy = 0.89 

Recall = 0.81 

Precision = 0.92 

AUC = 0.955 

P3E9 

Stratified K-cross fold 

validation LR (Mean 

pooling) w/ 5 folds 

Mean Train Acc = 0.89 

Mean Validation Acc = 

0.89 



 

 

P3E10 

Stratified K-cross fold 

validation GNB (Mean 

pooling) w/ 5 folds 

Mean Train Acc = 0.85 

Mean Validation Acc = 

0.85 

 

P3E11 

Stratified K-cross fold 

validation RF (Mean 

pooling) w/ 5 folds 

Mean Train Acc = 0.99 

Mean Validation Acc = 

0.89 

P3E12 

Stratified K-cross fold 

validation SVM (Mean 

pooling) w/ 5 folds 

Mean Train Acc = 0.93 

Mean Validation Acc = 

0.91 

P3E13 

Stacking generalization- 

Base mode: GNB, SVM, 

RF; meta model: LR 

F-score = 0.89 

Accuracy = 0.915 

Recall = 0.86 

Precision = 0.93 

AUC = 0.929 

The result presented in this study provides compelling evidence that a novel Support Vector 

Machine (SVM) utilizing the "word2vec-google-new-300.txt" [1] text vectorizer, in 

conjunction with the appropriate data cleaning techniques outlined in the paper, is an 

effective tool for predicting hate speech on Twitter. 

  



 

 

6 CONCLUSON AND FUTURE RECOMMENDATION 

6.1 Conclusion 

In conclusion, the project aims to address the issue of hate speech in social media, 

particularly Twitter. The proposed solution is to stream 1% of all Twitter data using Django 

and pass it through a hate speech classification algorithm, along with two transformer APIs 

for genre classification and sentiment analysis of English and Nepali tweets. The hate 

speech classifier was developed through 21 experiments divided into three phases, and it 

was found that the Word2Vec [1] algorithm along with Nobel SVM outperformed all the 

other approaches. The results show that by leveraging machine learning algorithms, a 

robust system can be created for hate speech analysis, which could potentially contribute 

to mitigating the negative impacts of hate speech on society. 

6.2 Future Recommendation 

Based on the project and the results obtained, there are a number of possible avenues for 

future work. One potential direction would be to explore the use of premium Twitter APIs 

to access a larger portion of the Twitter data stream and increase the accuracy and 

effectiveness of the hate speech classifier. Additionally, it may be worth exploring the 

development of a user-specific hate speech censoring system that operates on individual 

user timelines rather than on the entire Twitter data stream. 

Beyond Twitter, there is also significant potential for applying similar hate speech detection 

and censorship techniques to other social media platforms. By expanding the scope of the 

analysis to include other platforms such as Facebook, Instagram, and YouTube, it may be 

possible to develop a more comprehensive system for detecting and preventing hate speech 

across multiple channels. Ultimately, the continued development and refinement of hate 

speech classification and censorship systems will be an important step towards promoting 

a more respectful and tolerant online environment. 
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APPENDIX I 

 

 

Fig. 34: Chrome Extension When Disabled 



 

 

 

Fig. 35: Chrome Extension When Activated 

 



 

 

 

 

Fig. 36: Analysis on Twitter Live Sample Stream 

 


