

Deerwalk Journal of Computer Science and Information

Technology

Automated Detection of Hate Speech in Twitter Using Natural

Language Processing

Aayam Ojha*

ojha.aayam@gmail.com

ABSTRACT

This research project aimed to develop a highly efficient and effective Chrome extension

that could classify tweets containing hate speech, along with conducting sentiment and

topic analysis. Hate speech is a persistent and concerning issue on Twitter, yet the platform

has made little effort to address it. To address this challenge, this research performed a

series of experiments, including the use of Support Vector Machine (SVM), Random

Forest, and Long Short-Term Memory-based (LSTM) neural network classifiers. The

results of the experiments showed that the SVM classifier, combined with word2vec [1]

feature engineering, outperformed all other methods.

Then developed the Chrome extension using a monolithic repository architecture, utilizing

React and Django. By implementing this extension, users are able to automatically analyze

live tweets and identify hate speech content, along with obtaining sentiment and topic

analysis. The outcome of this research project could provide a significant contribution

towards a more positive online environment and towards curbing the prevalence of hate

speech on Twitter.

Keywords: NLP, Hate Speech Classification, SVM, NLP Classifier, LSTM, Chrome

Extension

1 INTRODUCTION

1.1 Overview

Hateful speech is a pervasive problem in modern times due to the rise of the internet,

making it easier to spread negative content to a large audience. Twitter, a popular social

media platform, claims to promote free speech, but it has been widely used to spread hate

and promote hateful ideologies. As such, there is a need to develop a tool to censor such

content on Twitter. This paper proposes the development of a Google Chrome plugin

extension that utilizes natural language processing to detect hate speech in a user's live

Twitter feed.

1.2 Background and Motivation

Despite the negative effects of hate speech on people's emotional well-being, Twitter has

refused to take any action against its platform being used for racist, anti-Semitic,

homophobic, and transphobic attacks. Twitter’s negligence towards hate speech on their

platform is well demonstrated by insurrection at U.S. capital building on 6th January, 2020;

it took Twitter 4 years to final take action against an alleged racist and Nazi sympathizer

Donald J. Trump. The growth of hate speech on other platforms such as Reddit has shown

negative effects on the mental health of college students [2]. To address this problem, this

paper proposes a solution that will automatically detect and censor hate speech on Twitter

using a Google Chrome plugin. To ensure that the system is effective, it will also

incorporate topic and sentiment analysis to provide a more comprehensive hate speech

detection system. The removal of hate group Subreddit on Reddit has shown that censoring

certain content is necessary to reduce hate speech on online platforms [3], highlighting the

importance of developing effective tools to detect and censor hate speech.

Paper purposes a hate speech classification model developed using Natural Language

Processing (NLP) techniques such as embedding matrix using word2vec [1], and mean

pooling for feature reduction. Paper drew conclusion on using noble SVM model after

running 21 different experiments with different NLP feature engineering technique and

neural network architecture.

For the sentiment and topic analysis, this paper purposes the use two transformers from the

hugging face library: cardiffnlp/twitter-xlm-roberta-base-sentiment [4], and classla/xlm-

roberta-base-multilingual-text-genre-classifier [5]. This allowed for a robust hate speech

detection system to be built around hate speech classification, sentiment analysis, and topic

analysis.

1.3 Problem Statement

In recent years, hate speech has become an inescapable part of daily life for Twitter users,

and despite the negative psychological effects linked to hate speech [2], Twitter has not

taken sufficient action to address this issue. Any measures taken by Twitter have only been

in response to public outcry and not of their own accord. In 2022, Twitter finally banned

Kanye West after decade long controversies and hate speech, it was same with Donald J.

Trump. Twitter’s hate speech policy aims to create a safe and healthy environment on their

platform [6], but it seems like twitter has done very little to support this policy, especially

when it comes to celebrities and politician. This issue has future magnified after Elon Musk

took over Twitter on October of 2022; as state in a piece done by Sheera Frenkel and Kate

Conger in the New York Times, the derogatory inuendo against black Americans have gone

up from 1,282 times a day to 3,876 times a day, and slurs against gay men used to appear

2,506 times a day now going up to 3,964 times a day, as well as antisemitism has increased

by more than 61 percent in the two weeks after Elon Musk acquire the site. [7]

1.4 Objectives

The Objectives of this project are listed below:

a) To censor hateful tweet written in English language

b) To perform Topic and Sentiment analysis on Nepali and English tweets

c) To develop a natural language processing model to identify hate speech tweets

d) To develop Google Chrome plugin that will scrape live tweet feed of user to filter

hateful tweets.

1.5 Scope and Limitation

This project is categorized under web-based machine learning applications, which is a

specialized field in computer science that uses data to train specific parameters in an

equation to make predictions. The project uses a trained machine learning model and two

pre-trained transformers to determine if a tweet is hateful, as well as to perform topic and

sentiment analysis on the tweets. Hate tweets are concealed, and the topic and sentiment of

the tweet are presented above it in the form of a badge [see Appendix I].

The scope of this project can be extended to multiple social networking websites including

but not limiting to Facebook, Reddit, etc. As all of these websites require a way to control

hate speech, but they cannot censor individuals' negative and hateful messages in order to

safeguard freedom of speech. This extension circumvents this issue by allowing users to

choose what they wish to view or avoid.

However, a significant limitation of this project is that the developed extension is not cross-

browser compatible, nor is the trained model and deployed backend are cross-platform

compatible with other social networks such as Facebook. This necessitates the development

of entirely new extensions for web browsers like Firefox and new machine learning models

and backends for other social media platforms.

2 BACKGROUND STUDY AND LITERATURE REVIEW

2.1 Background Study

Machine learning is an established technology with a wide range of applications in various

fields of computer science, including computer vision, signal analysis, and natural language

understanding. This paper focuses on a specialized branch of machine learning known as

NLP.

Prior to the emergence of NLP, understanding and analyzing linguistic idiosyncrasies was

nearly impossible. In traditional systems, there was no way to automatically comprehend

natural language, so people had to be hired to review the sentiment and topic of any corpus.

However, NLP bridged this gap by providing a means to vectorize text.

Social media platforms are excellent for sharing ideas and ideologies, but they are

frequently contaminated with hateful speech that has a detrimental impact on viewers'

mental health [2].

A comprehensive literature review of the implications of hate speech on social networking

platforms, as well as various machine learning and deep learning approaches for developing

a classification model, is required to be deployed and used by a Chrome-based extension

to address the problem of hate speech.

2.2 Literature Review

The prevalence of hateful speech in online communities has garnered attention in recent

years, as its psychological effects on individuals have become a cause for concern. Koustuv

Saha et al. [2] conducted a survey to investigate the prevalence of hateful speech in online

college communities and its psychological effects on students. The study found that hate

speech was present in 87.3% of the observed online college communities, and that 49.7%

of participants reported experiencing psychological distress as a result of hate speech.

These findings suggest that hate speech has a direct negative effect on mental health and

requires immediate attention and action. Clay Calvert [3] examined the potential harms of

hate speech and how communication theory can help understand and address them. In the

ritual communication model, hate messages require a channel to be transferred from sender

to receiver, with Twitter serving as such a channel in recent years.

Machine learning algorithms have shown promise in detecting hate speech, but the choice

of model remains an important factor. Sindhu Abra et al. [8] aimed to provide insights into

the strengths and weaknesses of various machine learning algorithms for hate speech

detection. The study employed data cleaning techniques, such as vectorization,

lowercasing, removal of special characters, and stemming, followed by text vectorization

using Term Frequency-Inverse Document Frequency (Tf-idf) with bi-gram. The study

found that Multi-layer Perceptron (MLP) outperformed other models, achieving 96.7%

accuracy, while SVM had an accuracy of 95.3%. These results indicate that simple

preprocessing and algorithmic models can accurately classify hate speech.

Akanksha Bisht et al. [9] proposed a deep learning approach based on LSTM models for

detecting hate speech and offensive language in Twitter data. The study employed various

NLP techniques, such as tokenization, stop-word removal, and stemming, followed by text

vectorization using Sandford's GloVe2vec [10]. The system architecture consisted of one

LSTM/Bi-directional Long Short-Term Memory (Bi-LSTM) layer with 100 units, followed

by a fully connected SoftMax layer and a classification layer with follow stopping criteria:

Fig. 1: Stopping Criteria for Neural Network

The study found that a single LSTM-based neural network had an accuracy of 86%, and a

single bi-LSTM layer achieved 84.62% accuracy, demonstrating the effectiveness of this

approach for detecting hate speech in Twitter data. Gretel Liz De la et al. [11] employed a

similar approach, training LSTM models using k-fold stratified cross-validation. The study

found an F1 score of 87.7% on a Twitter dataset and 89.9% on a Facebook dataset when

using five folds, indicating the efficacy of this approach in detecting hate speech.

Sujatha Arun et al. [12] proposed a stacked weighted ensemble (SWE) model to improve

the accuracy and efficiency of hate speech detection on Twitter. The study employed data

cleaning techniques using the word_token tool from the Natural Language Toolkit (nltk)

library, followed by the removal of hashtags and URLs, conversion to lowercase, removal

of punctuation, and Porter stemming. The text was vectorized using Google's word2vec [1]

technique. The SWE model had the highest F1 score of 78%, along with precision of 89%

and accuracy of 95.54%, outperforming state-of-the-art machine learning algorithms such

as SVM. The study concluded that the SWE model can achieve high performance with

appropriate feature engineering.

In summary, the studies discussed above provide valuable insights into the prevalence of

hate speech in online communities and the psychological effects it has on individuals, as

well as effective approaches to detecting and classifying hate speech using machine

learning algorithms. These studies demonstrate the need for continued research in this area

to develop effective strategies for combating hate speech in online spaces.

2.3 Current System

Larry filter for Twitter is a Chrome extension that allows users to filter out tweets based on

specific keywords, hashtags, and usernames. Here is a breakdown of its features:

Features:

• You can filter out tweets based on specific words, hashtags, and usernames.

• The tweets are hidden, but not deleted, so they can be retrieved at any time by

disabling the filter or changing the criteria.

• It is compatible with the latest version of Twitter.

• The extension is easy to install and use, with a user-friendly interface.

In summary, both Open Tweet Filter and Larry filter for Twitter offer filtering capabilities

for Twitter, but Open Tweet Filter allows filtering based on content or author using regular

expressions, while Larry filter for Twitter filters tweets based on specific keywords,

hashtags, and usernames.

2.4 Problem with Current System

The current system allows users to filter out unwanted tweets on Twitter using regular

expressions or a list of specified words, hashtags, and usernames. However, this system

does not address the specific problem of hate speech classification in tweet feeds, or provide

functionality for topic and sentiment analysis in English and Nepali.

Some of the specific problems with the current system include:

Lack of hate speech classification: The current system does not have the capability to

classify tweets as containing hate speech or not. This is a critical issue for many social

media platforms, including Twitter, which has faced significant criticism for not doing

enough to combat hate speech and harassment.

Limited language support: The current system only provides support for filtering tweets

in English. This is a problem for users who may be interested in analyzing tweets in other

languages, such as Nepali.

Limited analysis capabilities: The current system only provides basic filtering

functionality and does not provide any analytical capabilities for topic and sentiment

analysis. This is a significant limitation for users who may be interested in understanding

the topics and sentiments of the tweets in their feed.

To address these problems, a more comprehensive system is needed that includes

capabilities for hate speech classification, support for multiple languages, and advanced

analytical capabilities for topic and sentiment analysis.

3 SYSTEM ANALYSIS

3.1 Analysis

3.1.1 Sequence Diagram

Fig. 2: Sequence Diagram of Entire System

3.1.2 Activity Diagram

Fig. 3: Activity Diagram of Entire System

Sequence starts by connecting to “https://api.twitter.com/2/tweets/sample/stream” to fetch

1% of all live tweets on English and Nepali Language. Tweet is then passed through custom

made hate speech classifier, and topic and sentiment analysis using hugging face

transformer API. Tweets are only analyzed if allowed by chrome extension. Analyzed

tweets are passed to the frontend to be viewed.

https://api.twitter.com/2/tweets/sample/stream

4 SYSTEM DESIGN

4.1 Design

4.1.1 Flow Diagram of System

Fig. 4: Flow Diagram of Entire System

Localhost is connected on port 8000 using browser, which initiate the process of fetching

and analyzing tweets. WSGI renders the loading skeleton on the browser for the user, at

the same time ASGI will connect to Twitter at 2/tweets/sample/stream to fetch 1% of all

live tweets, and establish a web socket connection with the frontend rendered by WSGI.

Chrome extension has control over which analysis should be performed (hate speech, topic,

or sentiment). Based on the settings, session is set in WSGI which is accessed by ASGI

through cache.

If hate speech flag is set, then sampled tweets will be analyzed for hate speech, and if topic

or sentiment flag are set, hugging face will be used to perform hate and topic analysis on

sampled tweets. After analysis, tweets are sent back to the frontend, along with their context

annotation tags, to be displayed for the user.

4.1.2 Deployment Diagram

Fig. 5: Development Diagram of System

Entire project was developed using Monolithic architecture, making deployment very easy

and fast. Browser connects to chrome extension which can set different flags for the entire

system. Port 8000, will render a loading screen and fetch 1% of sample stream tweets for

analysis on the trained model and hugging face API transformers.

Model training was done in Google Collaboratory (Google Colabs), using NLP techniques,

and word2vec [1] for vectorization.

5 IMPLEMENTATION AND TESTING

5.1 Implementation

The core of the system comprises the hate speech classification model and, the topic and

sentiment analysis models. To begin with, a Twitter hate speech dataset from Kaggle was

used to develop the hate speech classification model. The entire process of data cleaning,

pre-processing, and feature engineering, as well as model training and validation, was

carried out on Google Colab. The feature engineering and model training were executed in

three phases, with multiple experiments in each phase, as detailed in Section 5.1.1 -

Implementation Details of Modules. Additionally, a pre-trained transformer from the

Hugging Face library was selected for topic and sentiment analysis on Nepali and English

tweets.

A monolithic architecture was set up using nx for seamless development of both the

frontend and backend on the local machine. The frontend of the project, a Chrome

extension, was developed in ReactJS with the setup using vite.js for fast Hot Module

Reload (HMR) using esbuild. For improved functionality and ergonomic visibility during

development, the SCSS styling was used instead of pure CSS, with the Neumorphic design

pattern applied in the Chrome extension design.

The backend of the project was developed using Python and Django with Asynchronous

Server Gateway Interface (ASGI) to establish a web-socket connection.

5.1.1 Implementation Details of Modules

Methodology for Model Training and Development

To initiate the development of the Twitter hate speech classifier, the initial step involved

collecting a dataset named "Toxic Tweets Dataset" [13] from Kaggle, comprising of 56,745

tuples and 2 features.

Fig. 6: View of Dataset

In the subsequent step, a countplot was employed to visualize the balance of the label within

the dataset.

Fig. 7: Count plot of Labels

The development of a Twitter hate speech classifier involved three phases:

The first phase focused on data cleaning, feature engineering, and experimentation using

several classification models, including SVM, AdaBoost Classifier, and Random Forest.

The dataset was pre-processed using various techniques such as lowercase, contraction fix,

removal of stop-words, URLs, HTML decoding, extra spaces, punctuation, emojis,

diacritical marking, unicode decoding, and Porter Stemming. Following the data cleaning

process, a word cloud visualization was developed.

Fig. 8: Word Cloud of tweets

Fig. 9: After preprocessing using TF-IDF

Following that vectorization was done using TF-IDF. In this experimentation phase, the

performance of the classifiers was evaluated using F1-score.

In the second phase, the same pre-processing techniques were used as in the first phase,

and vectorization was done using Stanford's Glove [10] with glove.twitter.27B.100d.txt to

create an embedding matrix of 100 x 25. Instead of using machine learning models, neural

networks were developed; LSTM and Bi-LSTM models were used for classification, and

hyperparameter tuning was performed for Bi-LSTM. Stratified K-fold cross-validation was

also done to ensure that the models generalize well.

Fig. 10: Architecture of LSTM Neural Network

Fig. 11: Structure of LSTM Neural Network

Fig. 12: Structure of Bi-LSTM Neural Network

To evaluation of the metric of LSTM/ Bi-LSTM based neural network was done using train

loss vs validation loss, train accuracy vs validation accuracy, and Receiver Operating

Characterstics (ROC) curve.

In the third phase, a new set of data cleaning techniques were applied, including

tokenization, removal of URLs, mentions, hashtags, lowercase conversion, removal of

punctuation, Porter stemming, and stop-word removal. The vectorization technique used

was Google's Word2vec. The mean and max pooling of vectors was experimented with the

following classifiers: Logistic Regression, Gaussian Naïve Bayes, SVM, and Random

Forest Classifier.

Fig. 13: After word2vec and Mean/Max Pooling

Further experiments used stratified K-fold cross-validation was done with the mean pooling

technique. In this phase, evaluation was done using f1-score, accuracy, recall, precision,

ROC curve and confusion matrix.

Finally, stacking generalization was used with SVM, Random Forest Classifier, and

Gaussian Naïve Bayes as base models and Logistic Regression as the meta model.

Fig. 14: Stacking Generalization Model Architecture

Throughout the development process, exploratory analysis was performed, which included

an analysis of the balance of the dataset and a word cloud. The goal was to build an accurate

and efficient hate speech classifier for Twitter data. The different phases of the

development process allowed for a thorough evaluation of various pre-processing

techniques, vectorization methods, and classification models to achieve the optimal

performance of the hate speech classifier. Result of experiments done in different phases

are explained in detail in Section 5.2 - Result Analysis.

Summary of data cleaning technique and methodology used during training of mode is

provided below:

Table 1: Data Cleaning Technique

Data cleaning Reference Number

Lowercase 1

Contraction fix 2

Removing stop-word 3

URL removing 4

Decoding HTML 5

Removing Extra Space 6

Replace Emoji 7

Remove Diacritical mark 8

Unicode decode 9

Nltk twitter tokenizer 10

Nltk word_tokenizer 11

Porter stemming 12

Removing mentions and hashtags 13

Removing Punctuation 14

Table 2: Implementation Details of Different Experiments

Experiments Models

Data cleaning

(in sequence)

r/ Table 1: Data

Cleaning

Technique

Vectorization

method
Metrics

Phase 1

P1E1 SVM

1, 2, 3, 4, 5, 6,

14, 7, 8, 9, 12

Tf-idf with bi-

gram
F1-score

P12E2 AdaBoost

P1E3
Random Forest

(RF)

Phase 2

P2E1 LSTM 10, 1, 2, 3, 4, 5,

6, 14, 7, 8, 9, 12
GloVe

Train loss vs

validation loss; P2E2 Bi-LSTM

Train accuracy

vs Validation

Accuracy;

ROC curve

P2E3

Hyperparameter

tuning of Bi-

LSTM

Train loss vs

validation loss;

Train accuracy

vs Validation

Accuracy;

P2E4

Stratified K fold

cross validation

of LSTM w/ 5

folds

Mean train

accuracy vs

Mean

validation

accuracy of

every fold
P2E5

Stratified K fold

cross validation

of LSTM w/ 10

folds

Phase 3

P3E1 LR

11, 4, 13, 1, 14,

12, 3

Word2Vec,

Max Pooling

F1-score;

Accuracy;

Recall;

Precision;

Confusion

Matrix;

ROC curve

P3E2
Gaussian Naïve

Bayes (GNB)

P3E3 RF

P3E4 SVM

P3E5 LR

Word2Vec,

Mean Pooling

P3E6 GNB

P3E7 SVM

P3E8 RF

P3E9
Stratified k fold

LR w/ 5 folds

P3E10
Stratified k fold

GNB w/ 5 folds

P3E11
Stratified k fold

RF w/ 5 folds

P3E12
Stratified k fold

SVM w/ 5 folds

P3E13

Stacking

generalization-

Base mode:

GNB, SVM,

RF; meta

model: LR

Configuring Monolithic repo

The project development was structured in a monorepo architecture, facilitating modular

development of the React-based frontend, namely the Chrome extension. The

implementation of the nx-react plugin and the nx-workspace plugin enabled the creation of

a lightweight frontend, while additional components can be added as required.

Subsequently, a contained virtual environment for the backend was created using Pipenv,

which generates a dependency configuration in TOML file format that can be utilized to

set up the Django project, including all Python-based dependencies, alongside Node

modules using Yarn.

Fig. 15: Monorepo Project Structure

5.2 Result Analysis

In Section 5.1.1—Implementation Details of Modules, we conducted several experiments

in three phases to evaluate the effectiveness of different text vectorization techniques and

models. These phases included tf-idf with bi-gram trained on machine learning models, 100

x 25 GloVec [10] embedding matrix trained on neural network, and Word2Vec [1] vectors

with mean and max pooling trained on machine learning models. The impact of these

techniques was thoroughly analyzed and assessed.

During Phase 1, we performed experiments using SVM, AdaBoost Classifier, and Random

Forest models after text vectorization was carried out using TF-IDF with bi-gram. Among

these models, the Random Forest model exhibited the best F-score of 0.759. However, due

to its relatively low score, this approach was not deemed suitable for our needs.

Table 3: F-score of Phase 1 Experiments

Experiment Model F-score

P1E1 SVM 0.677

P1E2 AdaBoost 0.422

P1E3 Random Forest 0.759

In Phase 2, the text vectorization technique employed was GloVec [10], and the

performance of the LSTM, Bi-LSTM, and Stratified K-fold cross-validation models were

evaluated. However, the LSTM and Bi-LSTM models were observed to be overfitting,

displaying good performance on the training data but poor generalization to the test data.

Fig. 16: Bi-LSTM Train vs. Validation Accuracy and Loss

Fig. 17: LSTM Train vs. Validation Accuracy and Loss

Table 4: Phase 2 Experiments Results (Loss and Accuracy) on Test set

Experiments Hidden Layer Loss Accuracy

P2E1 LSTM 0.682 0.574

P2E2 Bi-LSTM 0.51 0.76

Fig. 18: ROC curve Bi-LSTM

Despite hyperparameter tuning, the highest validation accuracy achieved was less than 80%

even after 694 trials.

Fig. 19: Best Parameters and Validation Accuracy of Hyperband Bi-LSTM

Fig. 20: Hyperband Tuned Bi-LSTM Train vs. Validation

Additionally, K-fold cross-validation experiments were conducted, with 5 folds for LSTM

and 10 folds for Bi-LSTM, which confirmed the overfitting issue of the LSTM and Bi-

LSTM models. Therefore, LSTM/ Bi-LSTM based neural network techniques were

deemed unsuitable for the dataset.

Fig. 21: Train vs Validation Accuracy LSTM

Fig. 22: Train vs. Validation Accuracy Bi-LSTM

In Phase 3, a novel feature engineering technique was employed to vectorize the text

through the use of word2vec, and mean and max pooling. Subsequently, experiments were

conducted using a range of machine learning models, such as Logistic Regression,

Gaussian Naive Bayes, SVM, and Random Forest, in conjunction with mean and max

pooling of vectors. The outcomes demonstrated that all models performed effectively with

the mean of vectors. Of the models tested, the SVM model yielded the best performance

with an F-score of 0.89, accuracy of 0.91, recall of 0.86, precision of 0.93, and an AUC of

ROC curve of 0.966.

Fig. 23: Bar plot of Different Model Evaluation Metric (Mean Pooling)

Fig. 24: Bar plot of Different Model Evaluation Metric (Max Pooling)

Fig. 25: Confusion Matrix of Different Model (Mean Pooling)

Fig. 26: Confusion Matrix of Different Model (Max Pooling)

Fig. 27: ROC curve of Different Models (Mean Pooling)

Fig. 28: ROC curve of Different Models (Max Pooling)

Furthermore, a stratified K-fold cross-validation with four folds was conducted on the train-

test split, which demonstrated outstanding results. The SVM model was shown to have the

highest mean validation accuracy of 0.91.

Fig. 29: Train vs. Validation Accuracy of Different Models

Fig. 30: Confusion Matrix of Stratified K-fold cross validation SVM (K=4)

Fig. 31: ROC curve of Stratified K-fold SVM (K=4)

Finally, the last experiment in Phase 3 involved stacking generalization, with SVM,

Random Forest, and Gaussian Naïve Bayes utilized as the base models, and Logistic

Regression as the meta-model.

Fig. 32: Confusion Matrix of Stacking Generalization

Fig. 33: ROC curve of Stacking Generalization

However, it is worth noting that the novel SVM model still outperformed the generalized

model, with an AUC value of 0.966 compared to the AUC of stacking generalization of

0.929.

Table 5: Evaluation Result for Different Experiments

Experiment Model Evaluation

Phase 1

P1E1 SVM F1-score = 0.67

P1E2 AdaBoost F1-score =0.42

P1E3 Random Forest F1-score = 0.75

Phase 2

P2E1 LSTM
Test Accuracy = 0.57

Test Loss = 0.68

P2E2 Bi-LSTM
Test Accuracy = 0.76

AUC value = 0.51

P2E3
Hyperparameter tuning of

Bi-LSTM
Validation Accuracy = 0.78

P2E4

Stratified K fold cross

validation of LSTM w/ 5

folds

Mean Train Acc = 0.33

Mean Validation Acc= 0.32

P2E5

Stratified K fold cross

validation of LSTM w/ 10

folds

Mean Train Acc = 0.36

Mean Validation Acc =

0.34

Phase 3

P3E1 LR (Max pooling)

F-score = 0.86

Accuracy = 0.89

Recall = 0.83

Precision = 0.9

AUC = 0.942

P3E2 GNB (Max pooling)

F-score = 0.78

Accuracy = 0.8

Recall = 0.82

Precision = 0.75

AUC = 0.9

P3E3 SVM (Max pooling)
F-score = 0.89

Accuracy = 0.91

Recall = 0.84

Precision = 0.94

AUC = 0.921

P3E4 RF (Max pooling)

F-score = 0.88

Accuracy = 0.9

Recall = 0.82

Precision = 0.95

AUC = 0.782

P3E5 LR (Mean pooling)

F-score = 0.87

Accuracy = 0.89

Recall = 0.84

Precision = 0.9

AUC = 0.952

P3E6 GNB (Mean pooling)

F-score = 0.82

Accuracy = 0.85

Recall = 0.83

Precision = 0.82

AUC = 0.9

P3E7 SVM (Mean pooling)

F-score = 0.89

Accuracy = 0.91

Recall = 0.86

Precision = 0.93

AUC = 0.966

P3E8 RF (Mean pooling)

F-score = 0.87

Accuracy = 0.89

Recall = 0.81

Precision = 0.92

AUC = 0.955

P3E9

Stratified K-cross fold

validation LR (Mean

pooling) w/ 5 folds

Mean Train Acc = 0.89

Mean Validation Acc =

0.89

P3E10

Stratified K-cross fold

validation GNB (Mean

pooling) w/ 5 folds

Mean Train Acc = 0.85

Mean Validation Acc =

0.85

P3E11

Stratified K-cross fold

validation RF (Mean

pooling) w/ 5 folds

Mean Train Acc = 0.99

Mean Validation Acc =

0.89

P3E12

Stratified K-cross fold

validation SVM (Mean

pooling) w/ 5 folds

Mean Train Acc = 0.93

Mean Validation Acc =

0.91

P3E13

Stacking generalization-

Base mode: GNB, SVM,

RF; meta model: LR

F-score = 0.89

Accuracy = 0.915

Recall = 0.86

Precision = 0.93

AUC = 0.929

The result presented in this study provides compelling evidence that a novel Support Vector

Machine (SVM) utilizing the "word2vec-google-new-300.txt" [1] text vectorizer, in

conjunction with the appropriate data cleaning techniques outlined in the paper, is an

effective tool for predicting hate speech on Twitter.

6 CONCLUSON AND FUTURE RECOMMENDATION

6.1 Conclusion

In conclusion, the project aims to address the issue of hate speech in social media,

particularly Twitter. The proposed solution is to stream 1% of all Twitter data using Django

and pass it through a hate speech classification algorithm, along with two transformer APIs

for genre classification and sentiment analysis of English and Nepali tweets. The hate

speech classifier was developed through 21 experiments divided into three phases, and it

was found that the Word2Vec [1] algorithm along with Nobel SVM outperformed all the

other approaches. The results show that by leveraging machine learning algorithms, a

robust system can be created for hate speech analysis, which could potentially contribute

to mitigating the negative impacts of hate speech on society.

6.2 Future Recommendation

Based on the project and the results obtained, there are a number of possible avenues for

future work. One potential direction would be to explore the use of premium Twitter APIs

to access a larger portion of the Twitter data stream and increase the accuracy and

effectiveness of the hate speech classifier. Additionally, it may be worth exploring the

development of a user-specific hate speech censoring system that operates on individual

user timelines rather than on the entire Twitter data stream.

Beyond Twitter, there is also significant potential for applying similar hate speech detection

and censorship techniques to other social media platforms. By expanding the scope of the

analysis to include other platforms such as Facebook, Instagram, and YouTube, it may be

possible to develop a more comprehensive system for detecting and preventing hate speech

across multiple channels. Ultimately, the continued development and refinement of hate

speech classification and censorship systems will be an important step towards promoting

a more respectful and tolerant online environment.

REFERENCES

[1] T. M. Ilya, I. Sutskever, K. Chen, G. Corrado and J. Dean, "Distributed

Representations of Words and Phrases and their Compositionality," CoRR, vol.

1301.3781, 16 Oct 2013.

[2] K. Saha, E. Chandrasekharan and M. D. Choudhury, "Prevalence and Psychological

Effects of Hateful Speech in Online College Communities," Association for

Computing Machinery, New York, 2019.

[3] C. Calvert, "Hate Speech and Its Harms: A Communication Theory Perspective,"

Journal of Communication,, vol. 47, no. 1, pp. 4-19, 1997.

[4] F. Barbieri, L. E. Anke and J. Camacho-Callados, "XLM-T: Multilingual Language

Models in Twitter for Sentiment Analysis and Beyond," in 13th Conference on

Language Resources and Evaluation, Marseille, 2022.

[5] T. Kuzman, "Comparison of genre datasets: CORE, GINCO and FTD," 2022.

[Online]. Available: https://github.com/TajaKuzman/Genre-Datasets-Comparison.

[6] Twitter, "Hateful conduct policy," Twitter Help Center, 08 2021. [Online]. Available:

https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy. [Accessed 05

03 2023].

[7] S. Frenkel and K. Conger, "Hate Speech's Rise on Twitter Is Unprecedented,

Researchers Find," The New York Times, 02 12 2022. [Online]. Available:

https://www.nytimes.com/2022/12/02/technology/twitter-hate-speech.html.

[Accessed 05 03 2023].

[8] S. Abra, S. Shaikh and Z. Hussain, "Automatic Hate Speech Detection using Machine

Learning: A Comparative Study," ResearchGate, vol. 11, no. 8, 2020.

[9] A. Bisht, A. Singh, H. S. Bhadauria and V. Jitendra, "Detection of Hate Speech and

Offensive Language in Twitter Data Using LSTM Model," ResearchGate, pp. 243-

264, 2020.

[10] J. Pennington, R. Socher and C. D. Manning, "GloVe: Global Vectors for Word

Representation," 2014.

[11] G. L. D. L. P. Sarracen, R. G. Pons, C. E. M. Cuza and P. Rosso, "Hate Speech

Detection using Attention-based LSTM," EVALITA, pp. 235-238, 2018.

[12] S. A. Kokatnoor and B. Krishnan, "978-1-7281-8818-8/20/$31.00 ©2020 IEEE

Twitter Hate Speech Detection using Stacked Weighted Ensemble (SWE) Model,"

ResearchGate, pp. 87-92, 2020.

[13] A. U. Lyer, "Toxic Tweets Dataset," Kaggle.com, 2021. [Online]. Available:

https://www.kaggle.com/datasets/ashwiniyer176/toxic-tweets-dataset.

APPENDIX I

Fig. 34: Chrome Extension When Disabled

Fig. 35: Chrome Extension When Activated

Fig. 36: Analysis on Twitter Live Sample Stream

